WR Temperature Thermocouples

Nanjing Hangjia Electronic Technology Co., Ltd.

Overview

As a sensor for measuring temperature, thermocouples are usually used in conjunction with display instruments, recording instruments and electronic regulators. It can directly measure the temperature of liquid, steam and gas media in various production processes ranging from 0° to 1800° .

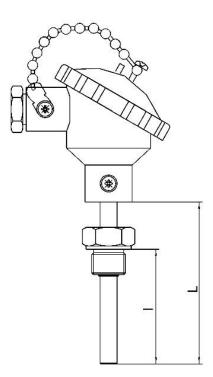
Features

- High quality temperature sensing elements, stable and reliable performance
- High mechanical strength and good pressure resistance
- Large measuring range and high measuring accuracy

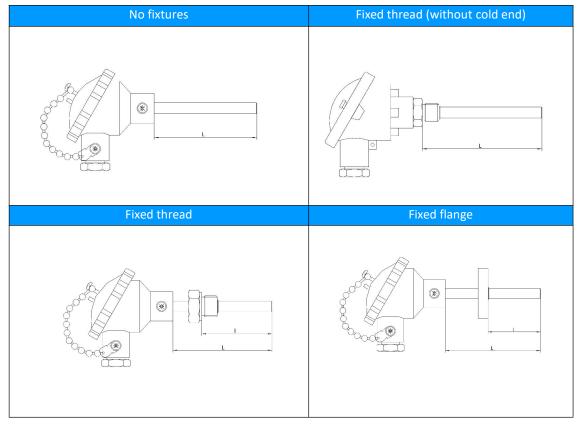
Technical Parameters

Temperature measurement range and accuracy

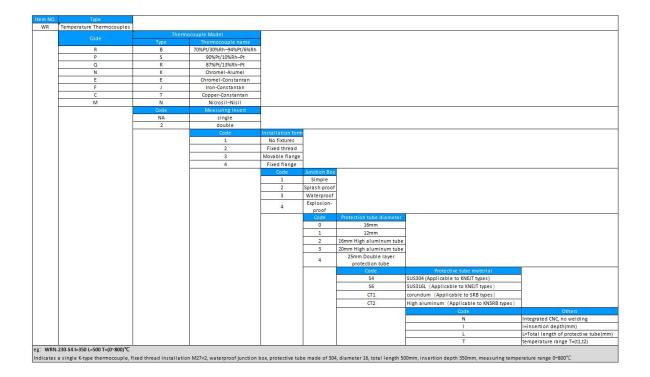
Thermocouple name	Model	Туре	Tolerance level	Measuring range (℃)	Tolerance (reference end is 0° C)
	WRB(WRR)	В	Class 2	600~1700	±0.0025 t
70%Pt/30%Rh–94%Pt/6%Rh			Class 3	600~800	± 4℃
				800~1700	±0.005 t
90%Pt/10%Rh–Pt	WRS(WRP)	s	Class 2 $\frac{0 \sim 600}{600 \sim 1600}$	0~600	±1.5 ℃
50%Ft/10%KII=Ft	WK3(WKF)	3		±0.0025 t	
87%Pt/13%Rh-Pt	WRR(WRQ)	R	Class 2	0~600	±1.5 ℃
				600~1600	±0.0025 t
Chromel-Alumel	WRK(WRN)	к	Class 2	-40~333	±2.5 ℃
				333~1200	±0.0075 t
Chromol Constanton	-Constantan WRE	E	Class 2	-40~333	±2.5 ℃
Chromer-Constantan				333~900	±0.0075 t
Connor Constanton		т		±1 ℃	
Copper-Constantan	WRT(WRC)	I		133~350	±0.0075 t
Iron-Constantan	WRJ(WRF)	J	Class 2	-40~+333	±2.5℃
				333~750	±0.0075 t
Nicrosil-Nisil	WRN(WRM)	N	Class 2	-40~333	±2.5℃
				333~1200	±0.0075 t


Note: "t" in the formula is the absolute value of the actual measured temperature of the temperature sensing element.

Thermal response time


When there is a step change in temperature, the time required for the output of the thermal resistor to change to 50% of the step change is called the thermal response time and is represented by $T_{0.5}$.

Protection tube diameter(mm)	Protective tube material	Thermal response time(s)
Ф16	High aluminum tube/corundum tube	≤150
	Metal tube	≤90
Φ20	High aluminum tube/corundum tube	≤240
	Metal tube	≤90
Φ25	High aluminum tube/corundum tube	≤360
Tapered protective tube	Metal tube	≤150


Structure Drawings (Unit: mm)

Installation

Ordering Guide

